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S I N G U L A R  P E R T U R B A T I O N  IN B E N D I N G  P R O B L E M S  FOR 

O R T H O T R O P I C  PLATES 

Yu. A. Bogan UDC 539.3 

The paper deals with a number of singularly perturbed boundary-value problems and variational 
inequalities that arise in the theory of bending of orthotropic plates with strong anisotropy of 
elastic properties. 

Unlike in the previously studied boundary-value problems of plane elastic theory [1], asymptotic 
analysis of the boundary-value problems for the stiffness ratios considered in the present paper reveals a 
number of phenomena that do not arise in the plane theory of elasticity. For example, the limiting equation 
is quasielliptic (has different orders of differentiation with respect to different variables), whereas in the plane 
theory of elasticity it is of composite type; for a rectangular region, the mixed problem reduces, in the limit, 
to two bending equations for an elastic beam. The problems examined in the present paper arise, for example, 
in studies of elastic plates reinforced in one direction by one family of very stiff continuous fibers. 

1. We assume that the Kirchhoff-Love hypotheses are valid and the moments are related to the strains 
by 

M l l  = - ( D l l e l l ( W )  q- D12e22(w)),  M22 = - ( D 1 2 e l l ( W )  + D22e22(w)), (1.1) 
M12 = - 2 D 6 6 e 1 2 ( w ) .  

Tile requirement of positive potential strain energy leads to the inequalities 

Dii > 0 (i = 1, 2, 6), DllD22 -- D26 > O. 

We assume that the stiffness in one of the chosen directions far exceeds the other stiffnesses: 

Dll >> D22, Da2, D66. 

We set 
r  = D l l / D 2 2 ,  dij = D i j / D 2 2 ,  i, j = 1, 2, 6, m = d12 + 2d66, r (< 1, 

el l (W) = cos 2 aW,ll  + sin 2 aw,22 -F sin2aw,12,  

e22(w) = COS 2 aW,22 + sin 2 aW,ll  -- sin 2aw,12, 

el2(W) = sin a cos a(W,ll - w,22) - cos 2aw,12. 

Here a is the angle between the above-mentioned direction and the Xl axis, w is the deflection, and w,v - 
02w/OxiOxj ( i, j - 1, 2). It should be noted that for rectilinear anisotropy, relations (1.1) coincide with the 
generally accepted relations; relations (1.1) imply that the orthotropy axes of the material make angles a 
and a + 7r/2 with the xl axis. The problems considered reduce to the problem of minimization of the energy 
functional 

/[Dllel21(w) + D~2e~2(w ) + 2Da2e~l(w ) + 4D66e~2(w)]dx- 2 [  fwdx ,  f E i f (Q)  
O Q 
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in a closed subspace H2(Q),  where Q is a plane bounded region with a piecewise-smooth boundary. The 
deflection is de te rmined  from the equation 

* * e * e * e Olle l le l l (W e) + D22e22222(w ) + D12e~le22(w e) --[- D12e22ell(W ) + 2D66e12e12(w ) = f .  (1.2) 

Here ei* j are differential operators that  are formally conjugate after Lagrange to the differential operators 
eij(w e) (i, j = 1, 2). The  superscript r at the deflection indicates that  the solution depends on a small 
parameter. Dividing the coefficients and the right side by D22 and retaining the previous notat ion for the 
dimensionless right side, we obtain the following equation with the large parameter  e -2 at the expression 
eh ll(we): 

- - 2  * ~ * e * * e g el le l l (W ) --{- d22222222(w ) + d12elle22(w e) -}- dl2e~2ell(W e) + 2d66212e12(w ) -- f .  (1.3) 

Before s tudying the  dependence  of the solution of Eq. (1.3) on the small parameter,  we consider the equation 
211 (v) = 0. Obviously, this is a parabolic equation with the double family of real characteristics 

cos o~b,z 1 + sin ~r = 0. 

We assume that  the family of characteristics is sufficiently smooth and introduce the new coordinates ~ = xl 
and y = x2 - r  Then  ela(V) is written as 

ell(Y) - -  1 + ~l,2,~ v,~ 1 + r v,• = a(~)v ~5 - b(~)v.,. 

We formulate the  first boundary-value problem for Eq. (1.3): 

OwE = ~b2. (1.4) w~]oQ = ~'1, On OQ 
Here OQ is the boundary  of the region Q. We consider the question of solvability of the boundary-value 
problem (1.3), (1.4). Wi thou t  loss of generality, the boundary conditions can be considered homogeneous; 
indeed, since the problem is linear, the solution w E can be written as the sum w E = u + v, where the function 
v satisfies the inhomogeneous boundary conditions and the function u is unknown. Generally, this leads to 
the appearance of a t e rm of order O(~ -2) on the right side of the equation for u. We first consider the case of 
the homogeneous boundary  conditions (1.4). We show that  Eq. (1.3) is uniformly elliptic. When a = 0, the 
coefficients are constant  and the existence of a unique solution of the problem (1.3), (1.4) is well known (see, 
e.g., [2, Chap. 4, Theorem 1.2]). For arbitrary c~, it suffices to use the identity 

+ + = + w + 

whose validity is proved by direct calculations, and the positive definiteness of the specific strain energy. Let 
a"(w, v) be the bilinear symmetr ic  form 

he(W, v) ----/[~-2ell(ZO)ell(V ) --[- d12ell(W)e22(Y ) 
q 

+ 4d66e12(w)e12( ) + 222( )222(v)] 

The variational formulat ion of the problem (1.3), (1.4) consists of the following: to determine a function 
w E E H~(Q) such tha t  for any v E H2o(Q), the integral identity 

he(We,V) = ( f ,v ) ,  f E L2(Q) (1.5) 

holds. For the solution of the  problem (1.5), the following estimates are valid: 

< c ,  < c .  (1.6) 

Indeed, there exists a positive number  d such that  dd22 - d22 > 0. This condition and the compactness of 
embedding of H2(Q) in L2(Q) leads to the first est imate in (1.6). Choosing a small e such that  e -2 > d. we 
obtain the second est imate.  Therefore, for e ~ +0, we can determine a subsequence (for which we use the 
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previous notation) that  weakly converges to a certain function w ~ E Hg(Q) with ell(W 0) -- 0. We consider 
two versions: (a) b(~) r 0; (b) b(~) = 0. 

We proved in Sec. 3 that  a homogeneous boundary-value problem for the  equation e~leu(w ~ = 0 
has only a zero solution. Therefore, the solution of the boundary-value problem with  homogeneous boundary 
values converges to zero in the limit e -~ +0 if the assumptions (a) and (b) are valid. In Sec. 3, we also studied 
the behavior of the inhomogeneous boundary-value problem as the small parameter  tends to zero. 

T h e o r e m  1. The solution of the boundary-value problem (1.3), (1.4) converges to zero as e ---* +0 ~f 
one of the assumptions (a) or (b) holds. 

It should be noted tha t  the estimates (1.6) are valid not only in Hg(Q) but  also in H2(Q), and hence the 
subspace K specified by the condition ell (v) = 0 can be nontrivial. Let us consider the  following example. We 
assume that  a = 0 (rectilinear anisotropy) and Q is a rectangular region (Q = {(Xl, x2); [Xll ~< h, 0 <~ x2 ~ 1}) 
and consider the following mixed boundary-value problem for the bending D~ of an orthotropic plate: 

( 02we 
we( = O, ( = 0, -2 ~ 

0 4  + = ~ 

e 02we,, . 03 w 03 w 
(C-2 (.)x_.~._..i_d12_~x22)(x,,1) =0 ' (~-2 0x31 +(d12-+-2d66)Ox--~2j(x,,O)=O, 

03Wr 03W e "~ 
c - 2 0 x  3 + ( d 1 2 + 2 d 6 6 )  0~10x22)(x1,1)=0.  

Let V be tile subspace of H2(Q) specified by the conditions 

V =  { v e  H2(Q),Okv/Ox k=O, k =  1,2} 

(the function and its derivative vanish for x2 = 0 in a weak sense). The estimates (1.6) are valid, and, hence, 
from the sequence w e, we can distinguish a subsequence that  is weakly converging to the element w ~ in V, 
such that w ~ = 0. In this case, w ~ is written as the sum w ~ ,~i~1 = xl r  + ~b2(x2). We consider the integral 
identity (1.5) in the subspace K of the space V specified by the condition V,zlZ 1 = 0 and pass to the limit 

~ +0. For w ~ we obtain the integral identity 

f { 4 d 6 6 w ~ z , ~ 2 ~ , z , z 2 + w ~  ,z2z2~,z2z2 } = dx f f ~  dx, (1.7) 
Q Q 

which is valid for any function c 2 E K. Any function from K admits the representat ion cy = xlcyl(x2 ) + 
~2(x2). In this case, w e and Owe/Ox2 converge, respectively, to w ~ and Ow~ in Ha/Z(OQ) and H1/2(OQ), 
respectively and, hence, Ck E//o2(0, 1), where k = 1, 2. We substi tute r and ~x into (1.7) and integrate. As 
a result, ~bl and ~2 and satisfy the integral identi ty 

1 1 
(2h3/3) j "r dx2 + 2h J "~2,22c,92,22 dx2 

0 
1 

+4hd66 f r dz2 
0 

for any ~k(x2) r H02(0, 1). Here 

0 
1 1 

= f(x l f )c~,(x2)dx2 + 2h ] ( f )  dx2 
0 0 

h 

(g) = / g(x , 
- h  

x2)dxl.  

(1.s) 

Since (g) E L2(0, 1), in accordance with the well-known smoothness theorems, we have r and i~2 E H4(0, 1) 
and, hence, they are solutions of the equations 

2h 3 d4~bl d2r d4r 
3 dx 4 4hd66 ~ = ( fx , ) ,  dx 4 - (f). (1.9) 
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Tile first equation in (1.9) can be regarded as a bending equation for a prestressed beam. Thus, the limiting 
problem is split into two problems of beam bending. 

T h e o r e m  2. Under the above assumptions, the solution of the problem De converges in V to the 
solution of the problem (1.9). 

2. In this situation, the behavior of the solution of the problem of plate bending above an obstacle is of 
interest. Let K0 be a cone in V specified by the condition v ~> 0 on OQ. We consider the variational inequality 

a*(w*,v -w~)>~( f , v -w~) ,  v E K o .  (2.1) 

Direct passage to the limit in (2.1) is impossible since the left side in (2.1) contains a negative power of e. 
The existence of solutions of the problem (2.1) is well known and it follows from the general theorems of the 
theory of monotonic operators [3]. Instead of (2.1) we consider the problem with the penalty operator 

v) - ,7-1 i(w~m)-v dx = (f,  v), f E L2(Q). (2.2) a~(w e,rl, 
Q 

Here 
v - ( x )  = 0, v (x) />  0, v - ( ~ )  = - v ( ~ ) ,  v(x) < 0. 

For the solution of the problem (2.2), the following estimates, which are uniform in ~ and ,7, are valid: 

11~'"112 ,< c ,  ~-211~7~-7=, I1~ <~ c .  

Using these estimates, we pass in (2.2) to the limit ~ ~ +0. In this case, the term with the penalty operator 
converges strongly in L2(Q). In the limit, we obtain 

~0,,  = ~ , r  + r 

We introduce the symmetric bilinear forms 

a'(r = 12 s 
0 

1 

1 

+ 2hd66 f r dx2, 
0 

a ~ ( ~ , ~ )  = 

0 

As a result, r and ~b~ satisfy the integral identities 

1 

2h3 - 1 7 ( r  l(x2) a1(r - T 77 dx2 
0 

1 

/ r dx2. 

1 

= i ( ( x l f )  + 2h(f))qOl(X2) dx2; 
0 

1 

(2.3) 

a2(%L '", c22) - 77 -1 i (r dx2 = i <f)~2 (x2)dx2. (2.4) 
0 0 

The integral identities (2.3) and (2.4) correspond to the penalty equations for the problem of beam bending 
above an obstacle. Passage to the limit 77 --. +0 is performed by the well-known procedure [3]. We denote by 
r and r the weak limits of the functions r and r as ,7 --~ +0. Hence, r and r satisfy the variational 
inequalities 

1 0 a (r - r /> (<fxa),~21 - r V~l E h'0 M H~(0, 1); (2.5) 

a2(~bT,c22 - r  >/((/) ,~2 - r  V~2 E Ko M Ho(O , 1). (2.6) 

Thus, in the limit, the initial variational inequality (2.1) is split into two inequalities corresponding to the 
problem of bending of an elastic beam above an obstacle. 

T h e o r e m  3. In V, the solution of the variational inequality (2.1) converges weakly to the solutions of 
the inequalities (2.5) and (2.6). 
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3. In Sec. 1, we showed that  the solution of the problem (1.2) converges to zero as r -=+ +0. If the 
boundary data  are nonzero, in reducing the boundary-value problem to the homogeneous problem, we obtain 
a term of order 0(r -2) on the right side of the equation. We investigate the behavior of the solution of the 
problem 

a~(we,v) = ( r  f E L2(Q), w ~ E H2o(Q) (3.1) 

as r ~ +0. We recall that  changing the independent  variables under the assumpt ion  of sufficient smoothness 
of the coefficients, we can bring the differential operator ela(w) to the form 

2 --2 2 , - I  w _ (1 n t- ~,Xl ) W,z 2. = , = , = ,  

For brevity, we set L(w) = e::(w).  In the sequel, it is necessary to examine the solvability of the first 
boundary-value problem for the equation 

L*(L(w)) = f .  (3.2) 

We note that  the smoothness properties of the solution of Eq. (3.2) depend heavily on whether the function 
g(x,) = ~?,~az~ vanishes everywhere in the region or not. If g(x~) = 0, we define the space G~ as a replenishment 
of the class of functions C ~ ( Q )  by the norm 

ilullG 1 { f  2 u 2 },/2 = [tt,XlX 1 "l" ,x I "3 !- U 2] dx ( 3 . 3 )  

O 

Exact thcorems on the traces of the functions from G1 for a region with a piecewise-smooth boundary are 
given in [4]. If g(x~) is nonzero, we introduce the space G2 = W2A(Q) as a replenishment  of functions of class 
C~(Q) by the norm 

u 2 u 2 u 2 dx~ 1/2 
]]u][a2----{f[ ,zl,, + ,zl + ,z2 + u 2] ) 

O 

W% denote by G the space G1 in the first case and the space G2 in the second case. In both cases, by the 
generalized solution of the first boundary-value problem for Eq. (3.2) is mean t  the function w E G satisfying 
the integral identity 

J L(w)L(v)dx  = f f v d z  (3.4) 
Q Q 

for any v E C~(Q).  The boundary  conditions for Eq. (3.2) have the form 

Ow oQ* woo" = O, Ozl = 0 (3.5) 

if g(xl) = 0, and 

w Oq OOn .w r* F* - Ow =0,  =0,  = OQ F 1 U F 2  (3.6) 
= O, Ox2 r2 

i fg(xl)  is nonzero. Here OQ* is the noncharacteristic part of the boundary and Fi (i = 1 and 2 and mes Fi ~ 0) 
are the boundary segments described by the equation xi = const. For the functions from G, an inequality of 
the Poincar~ type is valid: there exists a positive constant C such that  the inequali ty 

c 2 (3.7) 

holds for any function from G. Here i = 1 if u E G1 and i = 1 and 2 if u E G2. From the last inequality it 

follows that  if u E G1, the seminorm u,z,z I : [the norm of the function u,xl~, in L2(Q)] on G1 is equivalent 

to the norm (3.3) and, hence, the boundary-value problem for Eq. (3.2) with boundary  conditions (3.5) has 
a unique solution. When g(xl)  is nonzero, the situation is somewhat more complicated.  Mikhailov [5] proved 
(Lemma 8.1) that ,  for the generalized solution of the problem (3.2) with boundary  conditions (3.6), an analog 
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of the Gs inequality for elliptic operators is valid; i.e., there exist positive constants C1 and C2 such that  

(L(v),L(v)) >1 C,11v[122 - c211vllg. (3.8) 

Let us show that  the problem (3.2), (3.6) has a unique solution in G2. Indeed, if f is equal to zero, the integral 
identity implies that  L(w) = 0. In other words, we have 

02w 02~ Ow 
- -  - -  0 .  ( 3 . 9 )  
Ox2 

We mult iply (3.9) by w and integrate the result by parts.  We thus infer that  Ilw  1 II0 = o. Since the Poinca%- 
type inequality (3.7) is valid for w, it follows that  w = 0. From the uniqueness of the solution and inequality 
(3.8), it follows that  there exists a positive constant K such tha t  the inequality 

(L(w),L(w))  >1/illwl[~= (3.10) 

is valid. Indeed, if inequality (3.10) fails, for each natural  number  n, we can find an element Un E G2 such that  
Ilun][~ 2 /> n(L(un),L(un)).  We set vn = un/llunl[a2. Then ,  IlvnHv~ = 1 for each n and (Lvn,Lvn)o <~ 1/n. 
Consequently, (Lvn, Lvn)o -* 0 as n ~ ~ .  Therefore, (Lvn,Lv)o tends to zero as n -+ cx) for each v E G.~; 
but because of the compactness of embedding of G2(Q) in L2(Q), there exists a subsequence (for which we 
use the previous notation) such that  Iluj - ukl[0 tends to zero as j ,  k ~ co. However, by virtue of inequality 
(3.7), we have 

(nuj  -- Luk, Luj - Luk)o >f Cll[Uj  -- Ukl[~ 2 - C 2 H u j  -- Ukl[20, 

and, hence, Iluj - uklla2 ---* 0 and there exists (in view of the completeness) a function u such that  
I]u) - ullG 2 --* O. Then,  (Lu, Lv) = 0 for any v E G2. But  the unique solution in G2 is zero. We arrive 
at a contradiction since the norm of u in G2 is equal to unity. We revert to the problem (3.1). 

T h e o r e m  4. In G, the solution of the problem (3.1) converges weakly to the solution of the problem 
(3.8), and the following estimates are valid: 

IlwellG .< c,  ?liCk,(we)ill < c (k=  1, 2) (3.11) 

ttere C is independent  of e. We multiply the integral ident i ty  (3.8) by 52 and set v = w ~. We thus obtain the 
est imate 

[[ell(We)l]0 -k- C1e2[[e12(we)[[ 2 "q- C282][e22(we)H02 ~ []fH0[lw~[[0 <~ (40)-1[[f][02 + 0[[wS[[~. (3.12) 

Since I[e11(w~)[[20 ) C[[well~, setting 0 = C/2 in (3.12), we obtain the est imate [[w~[[a ~< C[[f[t0 and, hence, 
the other estimates in (3.12). Estimates (3.12) make it possible to pass to the limit in the integral identity 
(1.5) multiplied by e2; here w e converges weakly to w ~ in G, and w ~ satisfies the integral identity (3.9). From 
the uniqueness of the solution, it follows that  the entire sequence converges to w ~ 
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